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Abstract

This paper tests the feasibility of local-level violence forecasting. We apply
standard prediction models to new data from 242 Liberian communities to in-
vestigate whether it is to possible to predict outbreaks of local violence with
sensitivity and accuracy, even with limited data. We first trained our models
to predict communal, extrajudicial, and criminal violence in 2010 using 2008
risk factors. We then made forecasts of violence in 2012, before collecting data.
Our model predicts up to 88% of actual 2012 violence. This comes at the cost
of many false positives, for overall accuracy of 33 to 50%. Policy-wise, states
and peacekeepers could use such predictions to prevent and respond to violence.
The models also generate new stylized facts for theory to explain. In this case,
ethnic cleavages and power-sharing predict violence, while economic variables
typically do not. We illustrate how forecasting can be widely more applied to
micro-level conflict data.
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1 Introduction

Prediction of town- and village-level violence can be a valuable tool for both policy-

making and theory-building. Police, peacekeepers, and governments aim to stop local

violence before it escalates, but resources for prevention are scarce. Any information

that helps to better allocate them should have high returns. Prediction can also aid

the study of conflict. Good theories generalize, and prediction can be used to test,

validate and refine theoretically-motivated empirical models (Beck et al., 2000; King

and Zeng, 2001; Ward et al., 2013). In fields like conflict studies, where the explana-

tory power of existing models is often small, prediction is also an important inductive

tool, as it can reveal patterns, puzzles and stylized facts that may, in turn, suggest

areas for new research (Schrodt et al., 2013).

The amount of data available for predicting conflict is large and growing. This

includes “Big Data” generated through automated text-scraping algorithms, as well

as surveys, censuses, and administrative databases that measure crime, political vio-

lence, and associated risk factors. Combined with advances in computing power and

data mining techniques, this information is a tremendous resource for understanding

violence.

Yet studies of violence have focused on description and causal inference rather

than prediction. The few existing forecasting models mainly predict national-level

events, especially internal conflict (Hegre et al., 2013; Ulfelder, 2013; Ward et al.,

2013), state failure (Goldstone et al., 2010; King and Zeng, 2001), and inter-state

wars (Beck et al., 2000; Gleditsch and Ward, 2013).1

The most active frontier of conflict research in recent years has addressed local-

level incidents, including riots, crime, and mob justice. Local violence is important
1For reviews and discussion see Ward et al. (2010, 2013); Schrodt et al. (2013).
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to understand not only for its local impacts on development and well-being, but also

because it can shape, and be shaped by, national-level conflict processes.2 Much of

this micro-level work has been descriptive and explanatory, however. Some scholars

have used military reports, news archives, and social media to generate detailed data

on local violence. But in the absence of micro-level data on risk factors, local vio-

lence forecasting has been relatively rare and mainly limited to univariate time series

analysis.3

We have little sense of whether local forecasts are more or less reliable than na-

tional ones. Sub-national and cross-national forecasting models focus on different

kinds and levels of violence, and the results from the cross-national models cannot

be easily applied to the local violence. If feasible, local-level forecasts may prove

more actionable than national-level ones. Preventing a civil war requires marshaling

tremendous resources and coordinating among many disparate actors and institutions,

and good predictions might not influence actors on the ground. Predictions could be

more actionable in preventing ethnic clashes or crime requires, if only because there

are fewer actors to coordinate.

This paper uses original data from Liberia to investigate the feasibility of pre-

dicting local-level violence. We harness existing data mining and machine learning

techniques to tackle two questions. First, how well can we predict future outbreaks

of local violence (such as ethnic riots) from low-frequency data on risk factors? Sec-

ond, do the correlations we observe between risk factors and local violence suggest

important theoretical avenues for future research to explore?

While we are interested in such substantive findings, our goal is not necessarily
2This argument has been made for rioting (Brass, 1997; Horowitz, 2003), post-war violence

(Autesserre, 2010), and property disputes (Blattman et al., 2014).
3e.g. Schrodt and Gerner (1997); Yonamine (2014). There is also a large literature on crime

forecasting in Western cities, but most of these studies similarly rely on the autoregressive properties
of crime (Perry et al., 2013).
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to generalize from a handful of tests on one dataset. As with any micro-level or

case analysis, we cannot be sure how our results will fare when applied to other

contexts. Rather, a broader purpose of this exercise is to illustrate how social scientists

can use forecasting tools on the growing number of micro-level datasets on violence

and its correlates around the world. In general, the innovations in data mining and

machine learning of the past decades are poorly understood and underused in political

science, especially at the sub-national level. Applying these innovations to the study

of violence is a promising frontier, and the sum of the resulting substantive findings

should provide new insights to motivate further causal research.

Our data consist of three cross-sectional surveys covering 242 rural towns and

villages in Liberia in 2008, 2010, and 2012. We use surveys of both residents and

local leaders to measure seven main forms of violence (including riots, murders, and

extrajudicial killings) as well as dozens of geographic, social, and economic predictors.

We first used 2008 data to train models for predicting local violence in 2010,

simulating forecasts using cross-validation. Our models were based on four common

techniques from the forecasting and machine learning literature—logit, lasso, random

forests, and neural networks. This process involved running over 30 million specifica-

tions. We then collected data for a true forecast of violence in 2012, and compared

our predictions to actual incidents in that year.

We highlight four findings. First, the models perform significantly better than

chance and are robust to changes in specification. This is especially true of one of the

simplest methods, lasso, a form of constrained logit. If we are interested in maximizing

correct predictions of violence (true positives) and minimizing false negatives, lasso

predicts up to 88% of all violence in 2012 while holding overall accuracy at 33% or

greater. This comes at a cost of roughly 4.5 false positives for every true positive. The

area under the Receiver Operating Characteristic (ROC) curve is 0.65 for this lasso
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forecast, comparable to the performance of early cross-national models. Given that

local violence prediction remains largely unexplored terrain, we view these results as

a promising first step.

Second, some of the best-performing models are surprisingly parsimonious. The

optimal lasso model includes just 5 of the 56 available risk factors, suggesting that

it may be possible to generate reasonably reliable forecasts at relatively low cost in

terms of data collection. Predictive performance, moreover, is not driven by serial

correlation in violence.

Third, the models identify patterns that might not have been detected through

hypothesis testing alone. For example, economic conditions such as poverty and ad-

verse economic shocks are correlated with violence, but their predictive power is poor.

This is consistent with many accounts of intergroup violence, which see little role for

poverty in inciting attacks (e.g. Horowitz, 2003), but contrasts with studies that iden-

tify a causal causal relationship between economic shocks and crime (Freeman, 1999),

extrajudicial killings (Miguel, 2005), and inter-group violence (Chassang and Padro-i

Miquel, 2009).

Also, in the best-performing model, the single most robust predictor of violence is

whether or not minority ethnic groups are included in local government (i.e. power-

sharing). Counterintuitively, the prevalence of violence is higher, not lower, in power-

sharing communities. This relationship is not evidence of causality, and we caution

against generalizing, especially given our limited number of time periods and com-

munities. Nonetheless, this result suggests that the interplay of local institutions and

ethnic cleavages plays a role in violence, and is consistent with the argument that

power-sharing can backfire.

Fourth, violence appears to be more a function of systematic than idiosyncratic

risk factors, and seemingly disparate types of violence may have common roots. Some
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scholars argue that few episodes of violence are alike, in large part because their causes

are too heterogeneous to capture in regression models or early warning systems (e.g.

Cramer, 2007). Our results provide reason for optimism that local violence may be

less idiosyncratic than these accounts suggest.

One limitation of our study is the small number of time periods and communities.

While we could probably improve forecasts with “bigger” data, our dataset does have

some important advantages. In addition to the high level of granularity, our dataset

contains a large number of precisely-measured covariates, or risk factors. These are

often lacking in sub-national datasets, and are crucial for the theory-building and

model-testing aspects of our work. Our data on violence also have the advantage

of accuracy. We triangulate reports of violence from multiple survey respondents to

minimize the risk of reporting bias, then validate these reports through case-by-case

qualitative interviews. “Big data” are often collated from news stories, administrative

reports (such as crime statistics), and other sources. These are usually incomplete,

noisy, and have unknown but potentially serious forms of bias. Thus one risks mod-

eling the bias rather than the underlying patterns.

We also draw several substantive conclusions from this pilot. To start, local vio-

lence forecasting shows empirical promise, and could be an important tool for allocat-

ing resources and security forces to the places they are most needed. Prediction may

also be useful for building theory. Generating stylized facts can point research in new

directions or force us to think differently about violence and its correlates. For exam-

ple, further research is required to confirm and understand any correlation between

violence and power-sharing institutions designed to manage inter-ethnic relations and

violence. Is this relationship causal? Or, perhaps, is power-sharing caused by past

conflict, which in turn causes present conflict? We leave these questions for future

research to explore.
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Local-level forecasts are needed in more settings, ideally at higher frequency in

larger and longer panels. Relevant administrative data are available for a growing

number of countries, especially middle-income ones. Cheap, real-time data collection

would also help for these purposes, especially in the poorest and most fragile states

where administrative data are less common, and we discuss strategies that police and

peacekeepers could employ to collect such data even. At the national level, datasets

like the Integrated Crisis Early Warning System (ICEWS) have begun to provide

fairly accurate monthly forecasts of insurgency, ethnic violence, and other forms of

instability in about 29 countries (Ward et al., 2012). Nothing like this exists at the

sub-national level, but developing higher-frequency models of this sort is a fruitful

avenue for future conflict research.

2 Setting

Liberia is a West African nation of nearly four million people that suffered two civil

wars from 1989 to 2003. Five main features of the setting are relevant to this study.

First, in many respects Liberia stabilized over the study period, 2008-12. It held

a pair of free, competitive elections in 2005 and 2011 that brought to power a largely

legitimate, professional, and open regime. The state has been supported by ample

aid and a large United Nations (UN) peacekeeping operation.

Second, social cleavages remain deep. There are fifteen major ethnic groups (or

“tribes”) in addition to an “Americo-Liberian” elite that has historically dominated

power. There are tensions not only between neighboring groups, but also within

communities—for instance, between largely Christian/animist indigenous groups and

Muslim traders who are regarded as lesser citizens or even “strangers” in spite of

generations of cohabitation. These cleavages are widely thought to be one of the
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main sources of local violence.

Third, local violence is endemic. Among our study communities, in 2010 alone,

10% reported an act of collective violence, 15% reported a murder or rape, and 9% a

lynching or trial by ordeal.

Fourth, these episodes of local violence can escalate, and a number of high-profile

local incidents have threatened national peace. For example, in 2010, the murder of a

girl in one of our study villages escalated into countywide ethnic riots. Curbing such

escalation is a government and peacekeeping priority.

Finally, state capacity is weak, and the ability to prevent or respond to incidents

of local violence is limited. Liberia’s wars devastated the security and justice sectors.

Courts are largely inaccessible, and unable to cope with the volume of cases. The

army and police are underfunded and under-equipped, but their role and funding

is growing as UN peacekeepers draw down. Liberia is in these respects an ideal

test case for local violence forecasting, and there is widespread interest in developing

early warning and response systems to inform day-to-day law enforcement, prevent

the escalation of local conflicts, and allocate scarce government resources, especially

as UNMIL withdraws.

3 Data and measurement

We collected survey data from residents and local leaders in 242 villages and towns

in three of Liberia’s 15 counties: Lofa, Nimba, and Grand Gedeh.4 Figure 1 displays

a map of Liberia and the communities in our sample.

In each community we individually surveyed a representative sample of roughly 20

villagers plus four purposively selected leaders—typically a town chief plus women’s,
4See Appendix A for further details, including sampling of villages and potential selection issues.
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Figure 1: Communities in the study sample, with population density by district
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youth, and minority leaders. We collected data in three rounds: March to April 2009,

November 2010 to January 2011, and February to April 2013. In the first and second

rounds we selected a new cross section of villagers each time. In the third round we

interviewed leaders only for the dependent variable.

We use these surveys to construct a panel dataset, aggregating residents’ responses

into community-level means. We also use the leaders’ responses to code communal

events or characteristics, taking the modal leader response for binary variables (e.g.

any collective violence) and the mean response for continuous variables (e.g. distance

to the nearest road).

Note, however, that the data were collected in the context of a randomized eval-

uation of a government-sponsored alternative dispute resolution program, and the

villages are not a representative sample of all villages in the three counties. Rather,

county officials nominated these communities because they were thought to be more

dispute-prone than others. We cannot say how this affects predictions, but it implies

that we should interpret our results as conditional on a minimum pre-existing level

of risk. This is similar in spirit to some cross-national forecasting models, which

distinguish between countries with high and low ex ante probabilities of war before

generating forecasts (Beck et al., 2000).

Dependent variable: Incidents of violence

Each round of the survey asked leaders about seven types of violence in the previous 12

months, which we classify into three categories: collective violence (violent strikes and

protests, or violent confrontations between tribes); interpersonal violence (murders,

rapes, or fights/assaults with weapons); and extrajudicial violence (beatings or killings

9



Table 1: Number of towns with any incident of crime or violence, 2008–12 (n=242)

Dependent variable 2008 2010 2012

Any major incident of crime or violence 90 42 40
Any collective violence 25 9 7

Any violent strike or protest 8 5 4
Any violent confrontation between tribes 17 6 3

Any interpersonal violence 64 32 21
Any murder 9 14 5
Any rape 33 17 11
Any serious fight with weapons 43 9 6

Any extrajudicial violence 23 8 16
Any trial by ordeal 23 7 16
Any witch killing or beating 1 1 0

of suspected witches, or trials by ordeal).5

We construct a separate indicator for each category of violence, as well as an

aggregate indicator, equal to one if any of the seven types of violence occurred in the

past year.

Table 1 reports the prevalence of violence in each round. In 2008, 37.2% of com-

munities reported at least one major incident of crime or violence. By 2010, that

proportion roughly halved, to 17.4%.6 By 2012, however, the rate of decline had

slowed, and the proportion of communities experiencing at least one major incident

remained high (16.5%).

5Both men and women can be accused of using occult powers to inflict harm on others; in some
cases, mobs respond by beating or killing the accused (Miguel, 2005). Trial by ordeal is another
manifestation of occult beliefs, and requires suspects to withstand a heated machete on their skin,
or to survive eating the bark from the poisonous sassywood tree.

6At baseline the “fights with weapons” question was less specific, asking only about “serious fights”.
This likely accounts for a significant proportion of the decline in fights from 2008 to 2010, but the
decline in other incidents is similar or greater. If we omit all fights (with and without weapons) from
the aggregate indicator, prevalence rates in 2008, 2010 and 2012 are 29%, 16% and 15%, respectively.
Thus the fall from 2008 to 2010 is still precipitous.

10



Aggregation In this paper we focus on the aggregate indicator. There are two

arguments in favor of aggregation. First, because cross-validation requires splitting

the data into subsets, the aggregate indicator increases empirical tractability and

statistical power by making these rare events less rare. Cross-national models take

similar approaches, for instance by aggregating different crises into an indicator for

“political instability” (Goldstone et al., 2010).

Second, our qualitative fieldwork (discussed below and in Appendix B) suggested

that many incidents of violence were ambiguous, and that leaders rarely abided by

our three categories in their understanding of events. A murder may incite a protest,

which may pit members of different tribes against one another in episodes of tit-for-

tat violence. Thus the categorization in Table 1 is not so clear cut. Similarly, in

his ethnographic studies of violence in India, Brass (1997) finds that different acts

of violence are interrelated and may be difficult to sort into unambiguous conceptual

categories. He also argues that the ex post interpretation of violence is just that—an

interpretation—and may be far removed from the actual event. We test the validity

of the aggregation below.

Independent variables

We construct variables for 56 potential risk factors. Table 2 reports summary statistics

in 2008 and 2010. In some cases we have data from both residents and leaders and

so have two measures of the same predictor.

Table 2: Risk Factors

Covariate 2008 2010

Town population 2,032 3,117
# of households 238 337
% male 56% 48%
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Table 2: Risk Factors

Covariate 2008 2010

% under 30 yrs. old 20% 27%
% non-native/strangers (leader) 2% 3%
% non-native/strangers (residents) 13% 29%
% ex-combatants (leader) 2% 2%
% ex-combatants (residents) 9% 8%
% returned from internal displacement 58% 36%
Mean educational attainment (years) 5.17 5.54
% with no education 45% 42%
% receiving any “peace training” 28% 34%
Group participation (0–9) 3.74 3.69
Collective public goods index (0–11) 1.79 1.61
% who contribute to public facilities 86% 89%
% saying town is safe at night 52% 43%
% saying neighbors helpful 70% 50%
% rely on NGOs for public goods 53% 53%
% rely on gov’t for public goods 14% 17%
% describing police/courts as corrupt 33% 44%
Perceived equity in institutions (0–3) 2.60 2.37
# of tribes in town 2.63 2.66
% in largest tribe 82% 87%
% Muslim (leader) 9% 5%
% Muslim (residents) 12% 12%
Indicator for mosque in town 45% 21%
% accepting inter-religious marriage 66% 73%
% say Muslims shouldn’t be leaders 27% 55%
% believing other tribes violent 30% 65%
% believing other tribes dirty 15% 56%
Minority tribe in town leadership 59% 84%
% reporting burglary or robbery 13% 19%
% reporting assault 19% 8%
% reporting any land conflict 25% 21%
Any major destabilizing event 37% 17%
% of town landless (leader) 1% 0%
% of town landless (residents) 17% 12%
% of town farmers 18% 55%
Unemployment rate 4% 7%
Wealth index -0.02 -0.02
S.D. of wealth index in town 0.69 0.76
Exposure to war violence (0–13) 4.28 5.19
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Table 2: Risk Factors

Covariate 2008 2010

Participation in war violence (0–3) 0.31 0.45
% reporting loss of land during war 10% 9%
% displaced or refugee during war 80% 84%
Social services in town (0–14) 5.61 6.81
1 if police or magistrate in town 19% 18%
Freq. of police/NGO visits (0–2) 1.26 1.23
Town >1 hour from nearest road 14% 3%
1 if mobile coverage in town 58% 74%
1 if <2 radio stations in town 87% 4%
# natural resources in 2 hours (0–5) 1.44 1.77
Basic commodities price index (0–4) 0.60 0.69
% affected by human disease 4% 19%
% affected by livestock disease 16% 30%
% affected by crop failure 26% 29%

Qualitative data

We conducted in-depth, semi-structured qualitative interviews with all leaders who

reported incidents of violence, described in more detail in Appendix B. We did this to

validate our dependent variable, assess measurement error, and evaluate our approach

to categorization and aggregation. By validating all events, we minimize the risk of

under- or over-reporting of violence in the survey data.

4 Forecasting methods

Statisticians have developed a vast range of tools for forecasting, and have made a

number of attempts to assess their relative merits.7 One important lesson from this

literature is that no single model, or even class of models, dominates all others across
7Probably the most comprehensive and best known of these attempts was the StatLog project

of the early 1990s (King et al., 1995). For a more recent example, see Caruna and Niculescu-Mizil
(2006).
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all applications and metrics. We selected four models prior to collecting the 2012

data.8 Rather than attempt an exhaustive comparison, we chose a small selection of

techniques (logit, lasso and random forests) with long and proven track records. These

methods minimize the need for ad hoc decisions, and are transparent to and replicable

by the average applied empirical social scientist. We also chose one more complex

technique (neural networks) that can accommodate a large number of collinear re-

gressors and interactive relationships. While limited, our selection captures some of

the most important variation across classes of forecasting models: variable selection

and coefficient shrinkage techniques (lasso), ensemble and tree-based methods (ran-

dom forests), and non-linear adaptive weighting models (neural networks). We also

see promise for newer techniques such as Bayesian model averaging or support vector

machines for future research, but restrict our analysis to the preanalysis plan. We

describe our models briefly here, with more technical details in Appendix C.

4.1 Models

Logit Logit has the virtue of simplicity and familiarity, but has potential drawbacks.

Risk factors with limited predictive power may introduce more noise than signal,

reducing accuracy. Also, when violence is rare but the number of potential risk

factors is high, logit is overdetermined. It is common to prune variables manually or

using some mechanical criterion in order to avoid these problems, but this selection

process is not systematic or transparent.

Constrained linear regression: The “lasso” method The Least Absolute Shrink-

age and Selection Operator is among the most widely-used variable selection tech-
8The models, risk factors, and predictions were published as a conference working paper prior to

2012 data collection (Blair et al., 2012), which functions as a preanalysis plan. A small number of
minor changes were made following these predictions, and effects are documented in Appendix D.1.
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niques in statistics (Tibshirani, 1996). In effect, it is a constrained logit regression.

Lasso penalizes model complexity, shrinking all coefficients and reducing some to

zero. It thus prunes variables automatically, using a transparent, replicable selection

mechanism. Lasso models often include only a handful of predictors with non-zero

partial effects. This parsimony is advantageous when deciding which subset of risk

factors to track over time.9

Random forests Random forests are collections of decision trees (Breiman, 2001).

A decision tree sorts observations into subgroups (or “leaves”) and makes the same

prediction for observations on the same leaf. The algorithm begins by identifying

the single predictor that most efficiently distinguishes positives (in our case, incidents

of violence) from negatives (no violence). This first split partitions the data into

two subsamples that minimize the sum of squared deviations from the mean in each

sample. At each node, the model then identifies secondary and tertiary predictors

to further reduce mean squared error. Each observation is passed down the tree

until it reaches a terminal node, at which point a prediction is made based on the

average outcome for the training data observations at that node.10 Random forests

are comprised of many trees over many random subsamples of the training data and

many random subsets of predictors. The prediction of the random forest is the average

prediction for each tree in the forest, increasing stability.11

9We use the glmnet package in R (Friedman et al., 2010). There are also Stata packages, such
as lars (Mander, 2014).

10In our case, each tree is fit to 24 randomly selected observations (roughly 10% of the sample)
using 7 randomly selected risk factors and a maximum of five terminal nodes. Each random forest
is comprised of 1,000 trees constructed in this manner. For a given observation, the algorithm
generates a “final” prediction by taking the average of these 1,000 predictions.

11We use the randomForest package in R (Liaw and Wiener, 2002). We are not aware of a Stata
package.
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Neural networks There are many non-linear interactive techniques to choose from.

We opt to use neural networks, which are especially well-established in the machine

learning literature, and have been applied in political science as well (e.g. Beck et al.,

2000). Neural networks make no parametric assumptions, instead using an iterative

algorithm to approximate the underlying structure of the data. The algorithm begins

by constructing several different weighted sums of the available risk factors (each

called a node). It takes that layer of weighted sums and weights them into another

weighted sum, which maps onto the prediction space. In principle there can be many

layers and nodes, but ours is more parsimonious, with one layer and 5 nodes. The

weights are initially chosen at random, and then tuned iteratively to minimize mean-

squared error.12

4.2 Model training and simulated forecasting

Before collecting 2012 data on violence, we trained our models and simulated a fore-

cast through a conventional 5-fold cross-validation. First, we randomly partitioned

our 2008–10 sample of communities into five equal sized subsets. For each subset,

we trained our model on four of the subsets and then generated predictions for the

fifth, thus generating a prediction for each observation based on a model that was

not fit to that observation. Cross-validation has been shown to approximate out-of-

sample accuracy rates and is arguably the most accurate and widely-used method for

estimating prediction error without new data (Hastie et al., 2009).

Because a single cross-validation can yield idiosyncratic results, we repeated the

steps above across 200 trials for each model. Within each trial, we identified the

model parameters that allowed us to maximize sensitivity while maintaining an overall

accuracy rate above 50%. As discussed below, given the high costs of violence, we
12We use the nnet package in R (Venables and Ripley, 2002).

16



argue that this constitutes a reasonable balance between false positives and false

negatives (though we calculate the area under the ROC curve for all models as well).

We then calculated the average of those parameters, applied them across another 200

trials, and calculated average accuracy, “sensitivity” (true positive), and “specificity”

(true negative) rates.

In training and testing our models, we standardize all independent variables to

have zero mean and unit standard deviation.

4.3 Forecasts

For each of our models, we applied the optimal parameters from the 2008–10 cross-

validations to predictors measured in 2010. We then generated predicted probabilities

of violence for each community in our sample prior to collecting new data in 2012.

This test sets a high bar for our models to pass. Liberia is a country in flux.Between

2010 and 2012, for instance, Liberians living in Cote d’Ivoire lost their refugee status,

precipitating an influx of once-displaced persons into the country; dozens of riot police

officers were sent from Monrovia to semi-permanent deployments in the periphery;

UNMIL withdrew several troop contingents; a presidential election was held. Our

goal was to determine whether our models would retain their accuracy despite these

changes. Because the performance of any given model can be somewhat idiosyncratic

over time, both the simulated and true forecast results are of interest.

4.4 Evaluating model performance

In any prediction exercise there is a trade-off between sensitivity (true positive rate)

and specificity (true negative rate). For continuous predictions, this trade-off is reg-

ulated by the threshold above which we predict an outcome will occur. The higher
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the threshold, the lower the true positive rate. A ROC curve plots this trade-off over

the entire range of possible thresholds. The area under the curve (AUC) is a common

performance metric, capturing the model’s overall predictive power relative to chance.

While AUC is a useful benchmark, it can be misleading because it weights false

positives and false negatives equally. This weighting may be sensible in some applica-

tions, but less so in others. For example, local violence may be sufficiently costly that

a policymaker would be willing to tolerate many more false positives for the sake of

fewer false negatives. To address this possibility we also provide performance metrics

at the point on the ROC curve that maximizes true positives while maintaining an

overall accuracy rate of at least 50%. This ensures that we correctly classify as many

incidents of violence as possible while sustaining an overall accuracy rate that is at

least as good as chance.13

5 Results

5.1 Simulated forecasts in 2010

We use cross-validation to simulate forecasts of 2010 aggregate violence using 56

predictors measured in 2008. Figure 2 plots the average ROC curve for each simulated

model.14 The solid circles indicate the thresholds that maximize sensitivity while

maintaining accuracy at or above 50%.

Lasso outperforms the other models at almost all thresholds.15 It achieves the

largest area under the curve, 0.58, compared to 0.53 or less for the other models (see
13By comparison way of comparison, Goldstone et al. (2010) opt for the threshold that equalizes

sensitivity and specificity, weighting false positives and false negatives equally.
14We estimated the ROC curve 200 times for each model. The lines displayed represent the

average.
15The only exception is random forests at low discrimination thresholds, which may be of less

interest because of the high number of false negatives this would imply.
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Figure 2: ROC curves for simulated forecast in 2010
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Table 3). Logit performs no better and perhaps even slightly worse than chance,

perhaps because of the limitations noted in Section 4.1 above.

Moving left on the ROC from each solid circle reduces the number of villages in

which we predict violence, lowering sensitivity but increasing specificity and (in some

cases) accuracy. This would be appropriate, from a policy perspective, if it were

difficult or costly to expend resources on prevention. While our preferred threshold

was in some respects arbitrary, it was also judicious, as the solid circles correspond to

the points of maximum distance from the diagonal for both lasso and neural networks.

This implies that further improvements in sensitivity beyond our preferred threshold

would have required increasingly large penalties in terms of specificity and accuracy.

Table 3 reports eight measures of performance for each model: AUC plus sensi-

tivity, specificity, accuracy and other metrics at the thresholds indicated by the solid

circles in Figure 2. As a benchmark, we also report the results of simply predicting

that 2008 violence will recur in 2010.

Lasso again outperforms the alternatives, with a true positive rate of 77% and

an accuracy rate of 47%.16 For every true positive, the lasso generates almost four

false positives but few false negatives. This level of sensitivity is attained without

sacrificing much in terms of accuracy compared to the other methods (though lasso’s

specificity rate is considerably lower—a result of over-predicting violence). The stan-

dard deviations on these predictions are small, suggesting that the results are rela-

tively stable over cross-validated trials. The results are also robust to most modeling

choices.17

The sensitivity of these models is not driven by serial correlation in violence. As
16Since we identified the optimal parameters within each of 200 cross-validated trials, then applied

the average of those parameters across another 200 trials, some models fail to achieve accuracy rates
at or above 50%.

17Appendix D.2 reports detailed robustness checks.
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Table 3: Simulated forecasts of 2010 aggregate violence using 2008 risk factors

Dependent variable: Aggregate violence

Performance metric Logit Lasso Random
Forests

Neural
Networks

Simple
recurrence

AUC 0.49 0.58 0.52 0.53
(0.04) (0.03) (0.02) (0.04)

True positives (sensitivity) 48% 77% 52% 62% 48%
(0.08) (0.05) (0.05) (0.06)

True negatives (specificity) 52% 40% 50% 48% 65%
(0.04) (0.02) (0.02) (0.03)

Overall accuracy 51% 47% 50% 51% 62%
(0.03) (0.02) (0.02) (0.03)

Ratio of false + to true + 4.88 3.71 4.62 3.99 3.5
(0.73) (0.26) (0.46) (0.44)

Ratio of false - to true + 1.15 0.30 0.94 0.62 1.1
(0.36) (0.09) (0.19) (0.16)

Violence predicted (% villages) 48% 63% 50% 54% 37%
(0.04) (0.02) (0.02) (0.03)

False negatives (% villages) 9% 4% 8% 7% 9%
(0.01) (0.01) (0.01) (0.01)

we see from Column 5 of Table 3, 2008 violence predicts less than half of 2010 violence,

with a true positive rate of just 38%.18 Further, as we will see, the lagged dependent

variable does not appear among the top 10 strongest predictors of violence for any

model.

Lasso’s relatively strong performance does not imply that it is superior to logit,

random forests, or neural networks in any universal sense. Further optimization may

have improved the performance of these other models. For example, dropping a subset

of poorly-performing risk factors before running the simulated forecasts increases the

sensitivity of the random forests and neural networks models to levels similar to
18Naturally it is possible that further lags of violence would improve overall model performance,

and that lagged violence could displace other covariates in predictive performance. Our data cannot
say.
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Table 4: Performance of 2008–10 models in predicting 2012 aggregate violence

Dependent variable: Aggregate violence

Performance metric Logit Lasso Random
Forests

Neural
Networks

Simple
Recurrence

AUC 0.67 0.65 0.60 0.60
True positives (sensitivity) 93% 88% 65% 63% 38%
True negatives (specificity) 35% 22% 41% 52% 87%
Overall accuracy 45% 33% 45% 54% 79%
Ratio of false + to true + 3.54 4.49 4.62 3.84 1.8
Ratio of false - to true + 0.08 0.14 0.54 0.60 1.7
Violence predicted (% villages) 69% 79% 60% 50% 17%
False negatives (% villages) 1% 2% 6% 6% 10%

lasso.19 Given the relatively small number of villages and time periods and the large

number of potential risk factors, lasso’s built-in process for variable selection may

have given it an edge over the alternatives.

5.2 Forecasts

Figure 3 plots the ROC curves for our true forecasts of 2012 violence using 2010

risk factors and optimal model weights identified through cross-validation. Table 4

compares actual aggregate violence in 2012 to our predictions when we maximize

sensitivity while holding accuracy in the training data at or above 50% (the points

on each curve in Figure 3).

All four forecasts yield higher AUCs and sensitivity rates than in the simulations.20

Unlike in the simulations, lasso no longer dominates the other models. The lasso AUC

still exceeds that of random forests and neural networks, but the random forests

and neural networks ROCs cross the lasso ROC at the lower and upper ends of the
19See Appendix D.2.
20An exception is simple violence recurrence: 2010 violence is a poorer predictor of 2012 violence

than in 2008–10.
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Figure 3: ROC curves for 2012 forecasts
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distribution. Most surprisingly, the 2012 logit AUC exceeds that of the lasso, in spite

of the fact that the 2010 logit model performed no better than chance. (Again, our

results do not indicate that any one model is universally superior to the others, as

relative performance can vary over time). In general, each model’s AUC is robust to

modeling choices, but the optimal threshold (and the tradeoff between specificity and

sensitivity) varies a good deal, especially for random forests and neural networks.21

5.3 Is this predictive performance “high”?

Our forecasts achieve an AUC of 0.65 using lasso, 0.67 using logit and 0.60 using

random forests or neural networks. How good is this performance? 0.65 is roughly

the predictive power of the variables used in the classic Fearon and Laitin (2003)

cross-national analysis of insurgency, where a model trained on pre-2000 data is used

to predict post-2000 outbreaks of civil war (Ward et al., 2013). More recent cross-

national models have reached AUCs exceeding 0.8 (Hegre et al., 2013; Ulfelder, 2013).

Our pilot performs about as well as some of the earlier cross-national models.

This is unsurprising. The cross-national literature has generated many more datasets

covering many more time periods. Moreover, lessons learned over more than a decade

of research have iteratively improved performance. Similar improvements in the pre-

diction of local violence may be possible with further replication. Some of the cross-

national improvements have come from new risk factors, but some of the biggest gains

are from accounting for correlations over time and space. This suggests an important

direction for micro-forecasting research.

Finally, many cross-national models achieve high AUCs by under-predicting vi-

olence, and thus generating a large number of potentially costly false negatives. In

contrast, our local-level lasso performs best by over-predicting violence. This is partly
21See Appendix D.2.
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intentional, as we selected thresholds and model parameters to guard against false

negatives. This comes at the cost of many false positives (4.5 for every true posi-

tive).2223 This may be a price that policymakers are willing to pay, especially if the

costs of prevention are relatively low and the costs of violence relatively high.24

5.4 Model averaging

Rather than arbitrate between models, one alternative would be to average across

them. A simple approach, “majority voting,” generates a single prediction according to

what the majority of the models predict. Majority voting achieves a sensitivity of 72%

in the simulations and 90% in the true forecasts. Another approach, where we average

predicted probability across models and classify towns according to a discrimination

threshold chosen by cross validation, obtains sensitivity of 59% in the simulations

and 83% in the true forecasts, with accuracy rates of 50% and 46% respectively.25

Overall performance is similar to our best performing models. Appendix D.5 discusses

detailed performance and alternatives.

5.5 What variables predict violence in these models?

Table 5 ranks our 56 risk factors by the magnitude (in absolute value) of their co-

efficients in the lasso model and by their importance scores in the random forests

model (where “importance” is calculated as the average decrease in mean squared er-
22For a visualization of lasso accuracy, see Appendix D.3.
23Random forests and neural networks, meanwhile, correctly classify fewer cases of violence, and

thus have higher specificity and overall accuracy. They do so, however, with two to three times the
proportion of false negatives to true positives as lasso.

24Note that the surest way to increase accuracy would be to predict peace in every community.
This approach would achieve sensitivity of 0%, specificity of 100%, and overall accuracy of 83% for
both 2010 and 2012.

25Some of the more complex “ensemble” methods, such as Bayesian model averaging, are difficult
or impossible to implement on our data (e.g. Montgomery et al., 2012).
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Table 5: Rankings of risk factors by model

Lasso Random Forests

Risk factor Rank Coeff. Rank Importance

Minority Tribe in Town Leadership 1 0.30 9 0.0003
Town Population 2 0.15 1 0.0021
Percent Believing other Tribes are Violent 3 0.07 11 0.0003
Percent in Dominant Group 4 -0.05 3 0.0006
Percent Who Contribute to Public Facilities 5 0.01 24 0.0001
Mean Educational Attainment 2 0.0008
Percent reporting Loss of Land During War 4 0.0006
S.D. of Wealth Index In Town 5 0.0006
Number of Households 6 0.0005
Number of Tribes 7 0.0004

ror achieved by the addition of each variable to the model).26 Neural network weights

cannot be meaningfully ranked in this way and are omitted.

The optimal lasso model is parsimonious, achieving high sensitivity and consis-

tency across time periods and model specifications using just five variables. In some

sense, random forests is also parsimonious, in that the importance scores decline after

the first five to ten (and even the first) variables in the ranking.27 The most important

predictors do, however, vary somewhat across models. Just three of the five lasso risk

factors are in the top 10 for random forests. Even within models, changes in spec-

ification lead to (modest) changes in risk factors or their ordering (Appendix D.2).

One possible interpretation for this result is that different risk factors capture similar

underlying characteristics of the communities in our sample. For example, “minor-

ity tribe in town relationship,” “percent believing other tribes are violent,” “percent
26A comparison to logit, and a list of all 56 risk factors and their corresponding coefficients, is in

Appendix D.6.
27Logit is not as parsimonious and, as a result of multiple correlation, assigns opposite signs to

related risk factors. This makes the relative importance of related predictors difficult to assess—a
limitation of logit relative to lasso.
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in dominant group” and “number of tribes” are all related to ethnic heterogeneity

and polarization.28 Nonetheless, model dependence suggests that we should exercise

caution in interpreting the importance of specific risk factors.

With this caveat in mind, consider the risk factors themselves. Some are intuitive,

even mechanical. For example, given that our dependent variable is binary, the

correlation between violence and town population is unsurprising: more people implies

more potential disputants and more potential violence.

Other risk factors are consistent with existing theories. For example, the larger

the degree of ethnic heterogeneity, measured as the proportion of residents in the

majority tribe, the higher the risk of violence in these communities.

Other results are more surprising. One is the absence of economic risk factors in

the lasso model. Wealth levels are not significant predictors, nor are wealth shocks

such as droughts, floods and pest infestations. Economic variables appear in the

random forests model, but these capture inequality and loss of land during the war—

sources of economic grievance rather than income shocks.

Perhaps most striking is the relationship in the lasso model between violence and

power-sharing (an indicator for whether the minority tribe is represented in village

leadership). The coefficient is large and positive, meaning that power-sharing predicts

an increase rather than a decrease in the probability that violence will occur. Power-

sharing appears among the top ten random forests risk factors as well, though is lower

ranked. We return to this result below.
28Another possible explanation is that lasso tends to favor uncorrelated regressors, while random

forests tends to favor correlated ones.
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5.6 Disaggregated violence

While our decision to aggregate different categories of violence into a single indica-

tor was partly necessary for statistical power, it obviously implied some conceptual

slippage. As we show through qualitative data in Appendix B, different categories of

violence often proved difficult to distinguish from one another. As it turns out, the

predictors of different types of violence are also reasonably similar.

Cross-category forecast performance If our three categories of violence are

indeed interrelated, then they should share some of the same correlates, and it should

be possible to predict one category reasonably accurately using the same risk factors

that predict the others. Table 6 tests this possibility. The table displays AUC only,

with other performance metrics in Appendix D.8.

With a few exceptions, the models continue to perform better than chance. Most

notably, models trained on interpersonal and extrajudicial violence predict collective

violence with AUCs ranging from 0.52 (neural networks) to 0.6 (lasso) in the simu-

lations, and from 0.58 (neural networks) to 0.7 (lasso) in the 2012 forecast. These

results are comparable to the full model performance in Table 4. The lasso generally

(though not universally) continues to outperform the alternatives, producing AUCs

above 0.5 in six of the nine models, and an AUC below 0.5 in only one. Most impor-

tant, the models generally perform about as well predicting the excluded categories

(the second and third rows in Table 4) as they do predicting the included ones (the

first row).

Within-category forecast performance Finally, Table 7 reproduces our sim-

ulated and true forecasts with the dependent variable disaggregated into its three
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Table 7: Simulated and true forecasts for disaggregated violence

Area under the curve

Collective violence Extrajudicial violence Interpersonal violence

Performance metric Lasso RF NN Lasso RF NN Lasso RF NN

Simulated forecast, 2010 0.48 0.65 0.58 0.42 0.47 0.38 0.65 0.57 0.67
True forecast, 2012 0.48 0.52 0.66 0.71 0.52 0.61 0.61 0.60 0.71

component parts.29

Performance varies but overall is poorer with the disaggregated indicators, largely

because we are predicting rarer events. In the 2012 forecasts, lasso predicts extra-

judicial and interpersonal violence as well as it predicts aggregate violence, but its

performance no longer dominates. Lasso also performs poorly in predicting extra-

judicial violence in the simulations, and in predicting collective violence in both the

true and simulated forecasts. This is likely because instances of extrajudicial and

collective violence are rarer in the dataset. In general, the rarer the event, the worse

the models perform. This reaffirms our statistical power justification for aggregation.

6 Discussion and conclusions

Prediction has a long and successful track record in election forecasting and cross-

national violence. Our results suggest that the prospects for local violence prediction

and data-driven early warning are promising as well. We illustrate tools and tech-

niques that the social scientist familiar with regression should be able to understand

and replicate, in many cases on existing data. In this Liberia pilot, a relatively sim-

ple, parsimonious, and transparent variable selection model (the lasso) outperforms

most alternatives, and a simple majority vote aggregation of four models performs
29Full performance metrics are in Appendix D.8.
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similarly well.

We draw several initial conclusions, to be tested in other contexts, ideally with

longer term event data. First, local violence seems to be driven at least in part

by systematic, quantifiable risk factors. Second, the number of risk factors needed to

predict local violence may be relatively few and possible to measure—e.g., population

and ethnic heterogeneity. This suggests that future early warning exercises may

achieve similar results at lower cost.

Third, model performance can likely improve through larger, longer-term datasets

on which to train and test prediction models. Spatial models may have promise as

well (though it is not clear the types of violence we study are prone to geographic

spillovers). In the meantime, however, even simple models can serve as useful prob-

abilistic tools, forecasting violence with relatively few risk factors. Governments,

peacekeepers and civil society organizations may be able to leverage these models to

allocate scarce resource and address the conditions conducive to violence before it

occurs.

There are at least two practical ways to move ahead. One is to harness large, sub-

national administrative datasets on violence and potential risk factors—data which

are more commonly available in middle-income countries but not the least developed

countries. Municipal or district-level crime and conflict data, along with a large num-

ber of covariates, are available for a host of mainly middle-income countries with

conflicts, including at least two of the five largest countries in the world India and

Indonesia.30 The growing amount of web-scraped news data on violent events, mean-

while, could be geolocated and merged with administrative data on covariates to

produce similar datasets for other large countries.
30An example is crime and civil war violence in India, which has mainly been used for testing

causal hypotheses (Iyer and Topalova, 2014; Fetzer, 2013).
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Where such data do not exist, there may be technological solutions (such as mobile

phone-based surveys), news- and web-scrapeable data, or even traditional surveys

that cheaply increase sample size, time periods, and frequency of measurement. For

instance, Berger (2014) uses mobile phone data in Côte d’Ivoire to improve predictions

of UN data on local violence. Also, Hirose et al. (2014) use survey data on civilian

attitudes to improve predictions of Taliban attacks. Even single cross-sections that

gather time-invariant data could improve predictive power. Cost is an impediment

but not insurmountable. Peacekeeping missions like the one in Liberia expend huge

resources on patrols, field-based observers, and other forms of data collection. In

principle, the leader-based survey we conducted could be performed by mobile phone.

To narrow the number of key risk factors to measure, peacekeepers could use an

intensive survey-based approach in a small random sample of communities. The

effort and expense would be small relative to the overall budgets of peacekeeping

missions.

Beyond these practical implications for future research, the exercise generated

substantive patterns worth investigation. The power-sharing result is one example.

Several studies have found that exclusionary institutions foment conflict between

dominant and marginalized groups (Cederman et al., 2010), or that power-sharing

helps mitigate the risk of violence (e.g. Hartzell and Hoddie, 2003). Our results are

inconsistent with these studies, and instead align with a growing literature suggesting

that power-sharing may often be unstable, and may itself be a consequence of long-

standing inter-group struggles (e.g. Lake and Rothchild, 1996; Gates et al., 2014).

One possible interpretation is that power-sharing arrangements are responses to past

conflicts, and that past conflicts continue to predict future ones. Similarly, villages

where customary institutions (which tend to exclude minority groups) dominate may

represent particularly strong cases of majority ethnic rule that manage to suppress
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violence. There is a potential parallel to the cross-national forecasting literature,

which finds that ethnically factionalized semi-democracies are among the least sta-

ble regime types (Goldstone et al., 2010). While we are careful not to generalize

too much from this one case, and one out-of-sample forecast, these parallels deserve

further exploration.

In the end, we think this argues for a more even balance between forecasting

and hypothesis-testing. Currently the balance of conflict research—even of compar-

ative politics and international relations research in general—is almost entirely on

the hypothesis-testing side, with little work on the prediction side. At this extreme,

the marginal gains from more prediction exercises almost surely exceed the gains

from more causal investigations. Large quantities of existing micro-level data could

be harnessed for purposes of prediction, and new datasets are built every day. This

unexplored frontier is one of the discipline’s most intriguing and promising.
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Appendix for online publication

A Survey sites

There were originally 246 communities in the sample. We have survey data on 242 of

the 246 originally selected communities, as surveyors could not reach two extremely

remote villages for any survey round, one tiny village disbanded before the first follow-

up, and one village is missing data.

The data were collected in the context of a randomized evaluation of a government-

sponsored alternative dispute resolution training intervention, and the villages are

not a representative sample of villages in these counties. Rather, county officials

nominated these communities because they were thought to be more dispute-prone

than other villages. It is difficult to say how this sampling approach affects our

predictions and predictive power. It could improve or reduce performance. From a

policy perspective, one can imagine that understanding predictive power in the subset

of places perceived to be risky is a useful policy variable, and reasonable under budget

constraints. Nonetheless, one would like to be able to test these assumptions using a

representative sample of villages, or stratified random sample. Unfortunately this is

not available in this case, and is recommended for future research where possible.

No census frame existed, so for the representative sample, a team walked each

community and divided it into blocks, chose a random pathway, counted all houses

in that path, and randomly chose a set number. Household members were selected

randomly. Non-response was typically less than 5 to 10% per community.

We validate our events qualitatively, as described in the following section. It is not

possible to validate or compare these events to conflict events measured by ACLED

or other sources. First, we measure events that are inherently smaller scale. Second,
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the majority of major conflict events occurred during not after the conflict, so the

datasets do not overlap much in time. Third, news-based databases such as ACLED

are inherently incomplete and biased due to the bias in news coverage, especially in

countries where the majority of news coverage is radio-based and news organizations

are relatively unprofessional and disorganized, with no presence outside the capital.

B Qualitative investigation of event classification

We collected three main forms of qualitative data:

1. Between the first and second phases of data collection (2008–10), we and three

Liberian research assistants conducted 104 formal interviews with respondents

in 20 purposefully selected communities. We selected communities with high

and low levels of conflict, as well as those showing variation along potentially

important correlates of conflict (exposure to wartime violence, remoteness and

size).

2. Following the second wave of data collection (2010–11), we sent our Liberian

research assistants to investigate and verify all incidents of collective violence

reported in the survey through interviews and written notes. While we did

not have the resources to back-check other types of violence, these interviews

helped us validate the survey data and explore the interconnections between

apparently disparate violent events.

3. Finally, during the third wave of data collection, enumerators digital interview

in depth any leader who reported any incident of violence (from the seven

categories described above). This exercise served two main purposes. First, it

helped us to further validate the survey data, building our confidence that the
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dependent variable is measured with as little reporting bias as possible. Second,

along with the earlier interviews, it informed our decision to aggregate different

forms of violence into a single category.

In general, respondents who reported incidents in the survey continued to do so during

qualitative follow-up. Our interviews also suggested, however, that grouping incidents

into non-overlapping categories would be challenging. Respondents described the

same incidents in strikingly different ways. Much of this ambiguity resulted from the

dynamics of conflict escalation. The police and courts in Liberia are notoriously inept,

inaccessible and corrupt. Because victims cannot rely on these institutions to resolve

disputes, violence easily mutates from one form to another (e.g., a murder turns into a

riot or mob justice). Riots, lynchings and trials by ordeal often serve as extrajudicial

mechanisms for adjudicating other types of crime (e.g., rape and murder); it’s a hardly

a surprise that they often go hand in hand. There are numerous specific examples

from our fieldwork, and we outline a handful here for illustration.

• In our largest study town—Voinjama, Lofa County—the mysterious disappear-

ance and killing of a girl provoked a peaceful protest which quickly turned

violent. The (Lorma and Christian) mother of the missing girl accused the

town’s Mandingo (Muslim) population of abducting and murdering the girl in a

ritual killing. Traditional leaders (“Zoes”) were called to attempt to divine the

identity of the perpetrator, fomenting allegations of witchcraft. Riots ensued,

killing four. In our interviews, respondents varied dramatically in how they

categorized the sequence of events—as a riot, a murder, a violent confrontation

between tribes, a fight between men, or a lynching of suspected witches.

• In one of the larger towns, a hit-and-run accident provoked a violent protest

by the motorbike union. In their descriptions of the incident, some respondents
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focused on the hit-and-run, others on the violent protest.

• In several villages, respondents described how trials by ordeal had been used to

identify suspected murderers, typically in cases involving an unusual or mysteri-

ous death. As one local leader explained: “A little girl. . . passed away within this

community and everybody was surprised of that particular death, so the parents

of that little girl decided to go for sassy wood [trial by ordeal]. . . The sassy wood

man came and he...used hot cutlass—they put the cutlass on the fire and...if

you ain’t part of it will just be like water on your skin. . . They started to do it

going around all the people in the neighborhood.... They started touching them

with the hot cutlass...and the cutlass was able to grab one person. . . because

that particular person was the doer of the act.”

• In a small village, we directly observed a seemingly intoxicated woman attack

a man. Shortly thereafter another woman—a female relative or friend of the

man—attacked the first woman. As the two women grappled, male family

members and friends gathered and began to exchange insults. A physical fight

between two of the men ensued. The crowd continued to grow, and several

bystanders began agitating to join the fray. While the incident was eventu-

ally diffused, its interpersonal and collective dimensions remained difficult to

disentangle.

C Forecasting models

This section describes in more detail the estimation methods for each prediction

model, summarizing the generic method and highlighting the specific modeling choices

we made in each case.
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C.1 Lasso method

Given some dataset (xi, yi) where xi denotes a set of j standardized predictor variables

and yi a vector of responses, the lasso coefficients β are given by:

l (β) = -
N∑
i=1

ln
(
1 + exp

(
−βTxiyi

))
+λ

k∑
j=1

|βj|

where the first expression on the right hand side is a standard maximum likelihood

estimator, and the second is the penalty function specific to lasso. λ ≥ 0 is a tuning

parameter that controls the degree of coefficient shrinkage; the coefficients on poor

performers are forced to 0 and thus dropped from the model. A ridge regression looks

similar, except that the penalty is λ
∑k
j=1 βj

2. The key difference between lasso and

ridge regression is that the latter assigns non-zero coefficients to all predictors, though

the coefficients on poorly performing indicators can be very small. Ridge regression

thus performs coefficient shrinkage only, while lasso performs both coefficient shrink-

age and variable selection, and so generally produces more parsimonious models. We

opt for an elastic net, which uses a penalty that is a weighted sum of the lasso and

ridge penalty:

l (β) = -
N∑
i=1

ln
(
1 + exp

(
−βTxiyi

))
+λ

α k∑
j=1

|βj|+ (1− α)
k∑
j=1

β2
j


We use a variation known as “elastic net optimization.” that involves a scalar α,

which regulates the weight given to lasso (α = 1) versus ridge (α = 0) optimization.

In our preferred model we set α = .95, thus weighting the lasso penalty much more

strongly than the ridge. We use a modification of lasso analogous to logit in order to

accommodate our binary dependent variable. Thus, for a given observation, our model

generates a predicted probability of violence between 0 and 1. We then classify each
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observation as 0 or 1 (violence or no violence) according to a discrimination threshold

that is chosen by cross-validation to maximize sensitivity, keeping accuracy above

50%.

Our pruning procedure is as follows. First, we split the sample into five subsets,

or folds. We then train a lasso model on four of the five folds. This is the initial

training set. The lasso is fit over a sequence of 80 lambdas in the training data, in

effect producing 80 lasso models, each with a different lambda (and thus a different

vector of coefficients). The lambda that maximizes sensitivity while maintaining

accuracy above 50% in the training set is then applied to the test set. We iterate

this process over the five possible combinations of folds into training and test sets.

This is one cross-validation. We then repeat this process 200 times and calculate

the average optimal lambda across these 200 cross-validations—80,000 regressions in

total. Finally, we repeat the cross-validation procedure 200 additional times, this

time applying the average optimal lambda to every model. We calculate performance

metrics within each of these 200 trials, then report the average of each metric.

C.2 Random forests

Given some dataset (xi, yi), a regression tree sorts observations into leaves and makes

a prediction, ŷ, for each leaf. Trees are constructed stepwise. Initially, all observations

are on the same leaf. The observations are then divided into two leaves based on values

of one of the k predictors, so that the sum of squared deviations from the mean in

each leaf is minimized. More formally, we minimize:

MSE =
2∑
l=1

 Nl∑
i=1

(yi − ȳj)2


where ȳj is the average outcome in leaf j and Nj is the number of observations
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in leaf j. In the next step, each of the these leaves is split again based on the

predictor that most reduces the sum of squared deviations from the mean in the leaf

(this could be the same predictor that was chosen in the first step). In principle,

this process could continue until all leaves contain only observations of the same

value (and MSE = 0). However, researchers typically employ some sort of stopping

criteria before that happens. In our case, we set the maximum number of nodes to be

5. Because we use regression trees rather than classification trees, each observation

is assigned a predicted probability rather than a binary (0/1) prediction.

Random forests are comprised of many trees fit to random subsets of the data with

random subsets of predictors available for splitting. Each tree generates a distinct

predicted probability for each observation, and the prediction for the entire random

forest model is just the average of the predictions of each tree in the forest.

For our random forests model, we grow 1,000 trees with a maximum of 5 terminal

nodes each and
√

56 variables sampled (without replacement) at each node.

C.3 Neural networks

Neural networks are layered systems of weighted sums of predictor variables with

a final weighted sum mapped into the prediction space. In order to control model

complexity, practitioners specify the number of layers and the number of weighted

sums (called nodes) that comprise each layer. Our model has one layer and 5 nodes,

and a weight decay of 0.1 with randomly selected near-zero starting values. Using

five different sets of weights, the 56 predictors plus a constant are mapped onto each

of the 5 nodes. Then, these five nodes plus another constant are mapped, by some

linear combination of weights, to a scalar. Finally, this scalar is mapped by a logistic

function to the interval [0, 1], our prediction space. Hence, our network is defined by
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287 weights (56 × 5 + 5 + 2). they are initially chosen at random, and then tuned

iteratively to minimize the mean-squared error in the prediction space. The net is

trained via back-propagation.

More specifically, a neural network is a two-stage regression or classification model,

typically represented as a “network diagram” with K units at the top; the kth unit

models the probability of class k. In our classification model k = 1 and the response

Yk=1 is simply a binary variable.

Neural networks capture interactivity by generating “derived features,” denoted

Zm, from linear combinations of the predictors, then modeling the response as a

function of linear combinations of the derived features:

Zm = σ(α0m + αTmX),m = 1, ...,M

Tk = β0k + βTk Z, k = 1, ..., K

fk(X) = gk(T ), k = 1, ..., K

where Z = {Z1, ..., Zm}, T = {T1, ..., Tk}, σ(ν) is an initial non-linear transforma-

tion of the predictors, and gk(T ) is a final transformation of the output vector T . For

the special case where σ = 1, the network collapses to a linear model. For a more

thorough explanation of neural networks and their analogies to maximum likelihood,

see Beck et al. (2000).
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D Supplemental tables

D.1 Original forecasting models and effects of subsequent changes

The original Lasso model results, calculated before the 2012 data collection, are pre-

sented in Column 1 of Table C.1. A small number of relatively minor technical

changes were made after the 2012 data were collected, not with an eye to improv-

ing the specific performance of the models on these new data, but to correct small

errors or adhere to expert recommendations. Table C.1 details each change in turn,

including the cumulative effect on predictions and risk factors.

First, we estimated simulated forecast errors by applying a single set of optimal

parameters across 200 cross-validated trials, rather than estimating the error using

a varied set of optimal parameters identified within each trial (Column 2). Finally,

we standardized dummy variables, which we had not been doing in previous models.

These changes had little material effect on model performance or risk factor rankings

in the simulated forecasts.

D.2 Robustness of prediction model performance

Lasso

Table C.2 reports various robustness checks for the simulated forecasts (Panel A), true

forecasts (Panel B), and corresponding risk factors and rankings (Panel C), limiting

to the latter to the top five factors only. The columns are as follows:

1. Main specification: From Tables 3 and 4.

2. New Seed: We specify an alternate randomization seed for the selection of

folds which are used to select parameters and estimate error rates using 2010
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Table C.1: Reconciliation of original to current Lasso predictions

(a) Simulated forecast (2010)

Original

Model

Change in

cross

validation

Standardized

indicators

Performance metric (1) (2) (3)

AUC 0.56 0.58
True positives (sensitivity) 69% 67% 77%
True negatives (specificity) 49% 44% 41%
Overall accuracy 52% 48% 47%
Ratio of false + to true + 3.98 4.00 3.68
Ratio of false - to true + 0.52 0.50 0.31

Original

Model

Change in

cross

validation

Standardized

indicators

Performance metric (1) (2) (3)

AUC 0.66 0.65
True positives (sensitivity) 85% 88%
True negatives (specificity) 35% 23%
Overall accuracy 43% 33%
Ratio of false + to true + 3.88 4.46
Ratio of false - to true + 0.18 0.14

(b) 2012 Forecasts

Original

Model

Change in

cross

validation

Standardized

indicators

Performance metric (1) (2) (3)

Minority Tribe in Leadership 1 1 1
Town Population 2 9 2
Proportion in Largest Tribe 3 6 4
Percent Muslim 4 10
Percent Reporting Armed Robbery or Burglary 5
Percent Contributing to Public Facilities 6 4 5
Number of Tribes 7
Percent Reporting Loss of Land During War 8
Number of Resources Available 9 8
Community Wealth Index 10 14
Percent Farmers 2
Percent Believing Other Tribes Are Violent 3 3
Participation in War Violence 5
Frequency of Police Visits 7

(c) Risk Factor Rankings
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outcomes.

3. Dummies Not Standardized: We keep binary predictors on a (0,1) scale rather

than standardizing them to have mean 0 and standard deviation 1.

4. 10-fold Cross Validation: We identify optimal parameters and estimate forecast

error rates using 10-fold cross validation rather than 5-fold cross validation.

5. α = 1 : α is the weight placed on the Lasso penalty (sum of coefficient mag-

nitudes) relative to the Ridge penalty (sum of squared coefficients). Our usual

value for this is .95. When α = 1, we have a pure Lasso penalty.

6. α = .5 : sets the penalty to be half-way between a Lasso and Ridge penalty.

7. Subset (30) from OLS: We first fit an OLS model to the 2008/2010 data to

determine the 30 coefficients of greatest magnitude. We then use only those 30

predictors for the model.

Random forests

Table C.3 reports various robustness checks for the simulated forecasts (Panel A), true

forecasts (Panel B), and corresponding risk factors and rankings (Panel C), limiting

to the latter to the top five factors only. The columns are as follows:

1. Main specification: From Tables 3 and 4.

2. New Seed: We specify an alternate randomization seed for the selection of folds

which are used to select parameters and estimate forecast error rates using 2010

outcomes.
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3. Classification: Observations on a given leaf are classified by majority vote (with

a weight given to positive votes that is chosen by cross-validation). For all other

specifications, observations on a given leaf are assigned a predicted probability

of violence and are then classified based on a discrimination threshold.

4. 10-fold Cross Validation: We identify optimal parameters and estimate forecast

error rates using 10-fold cross validation rather than 5-fold cross validation.

5. 10 nodes: We limit each tree in the forest to have no more than 10 nodes. For

all other models, we limit trees to 5 nodes.

6. Trees Fit to Larger Sample: We fit each tree to a random sample of 36 obser-

vations rather than 24, the sample size for all other models.

7. 10,000 Tree Forests: We compose the Random Forest from 10,000 trees rather

than 1,000 trees as we do for all other models.

8. Subset (30) from OLS: We first fit an OLS model to the 2008/2010 data to

determine the 30 coefficients of greatest magnitude. We then use only those 30

predictors for the model.

9. Subset of 5 Lasso variables: We use only the 5 risk factors selected by the main

Lasso model, listed in Table 5.

Neural networks

Table C.4 reports various robustness checks for the simulated forecasts (Panel A) and

true forecast results (Panel B). The columns are as follows:

1. Main specification: From Tables 3 and 4.
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2. New Seed: We change the randomization seed to get different cross-validation

runs and fit our models using different (randomly selected) initial weights.

3. 10-Fold Cross-Validation: We chose at threshold and estimate forecast error

using 10-fold cross-validation rather than 5-fold, as in our preferred model.

4. Size = 10: We use 10 nodes in our hidden layer rather than 5, as in our preferred

model.

5. Low Decay: We force our weights to decay at a rate of 0.01 rather than 0.1 as

in our preferred model.

6. High Decay: We force our weights to decay at a rate of 0.5 rather than 0.1 as

in our preferred model.

7. Subset (30) from OLS: We first fit an OLS model to the 2008/2010 data to

determine the 30 coefficients of greatest magnitude. We then use only those 30

predictors for the model.

8. Subset of 5 Lasso variables: We use only the 5 risk factors selected by the main

Lasso model, listed in Table 5.

D.3 Visualization of lasso accuracy

We provide another way to visualize the trade-off between true and false positives for

the lasso model in the histogram in Figure C.1. Each bar represents the predicted

probability of violence in one community in 2012. The discrimination threshold is

the probability above which we predict violence will occur—the optimal threshold

identified through our simulated forecasts above. Two features of the histogram are

noteworthy. First, while the number of false positives is relatively high, the number

xv
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of false negatives is very low. This is by design: in training the lasso model to

maximize true positives, we also train it to minimize false negatives, subject only

to the constraint that overall accuracy remain at or above 50%. Second, many of

these false positives have relatively high predicted probabilities of violence; indeed, of

the 242 communities in our sample, the two with the highest predicted probabilities

are in fact false positives. This pattern does not necessarily imply that the model is

inherently flawed, or that the risk of violence in these communities is in fact lower

than it appears. Estimates of risk are by nature probabilistic; today’s false positive

may be tomorrow’s true positive.

D.4 Reconciliation of lasso to logit

Figure C.2 offers a visualization of the relationship between lasso and logit. λ is the

penalty placed on the sum of the magnitudes of coefficients for included variables.

As we move along the x-axis and λ decreases, the model becomes more flexible,

and the number of predictors included in the model (fitted with non-zero coefficients)

increases. When λ = 0, our lasso objective function is just the logit objective function.

The figure below shows that our optimally chosen λ is relatively restrictive. Cross-

validation reveals that most of our available predictors add more noise than signal,

and, consequently, we heavily penalize model complexity.

D.5 Ensemble predictions (Model averaging)

Rather than choosing the “best” model, here we consider ensemble prediction methods.

One promising approach is Ensemble Bayesian Model Averaging (BMA). This method

does not seem feasible in our case, as we do not have enough cross-sections of data to

both train and calibrate our models. Also, it is not clear that BMA is as relevant to
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Figure C.1: Predicted probabilities of 2012 violence, lasso model, by prediction accu-
racy
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cross-validation trials).
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our problem, where we care more about sensitivity than accuracy. BMA weights are

functions of log likelihoods, which are themselves functions of accuracy, not sensitivity.

A simpler “majority vote” method takes the binary predictions from each of the

four models (logit, lasso, random forests, and neural networks) and generates a single

prediction according to what the majority predicts. Since we have an even number

of models, we code ties as a prediction of violence. This is consistent with our overall

approach of erring on the side of sensitivity over specificity. This model performs

similarly to our best models, without major improvement over them.

An alternative ensemble method is to stack the models using a logistic regression.

takes predicted probabilities from the four models and generates a single predicted

probability using a logistic regression model. Then that probability is translated into

a 0,1 prediction using a discrimination threshold chosen by cross validation. It has

the downside, like BMA, of giving equal weight to false negatives and false positives.

Logistic stack performs surprisingly poorly.

D.6 Risk factors

Table C.6: Full Risk Factor Rankings

Lasso Random Forests Logit

Risk factor Rank Coeff. Rank Importance Rank Coeff.

Town Population 2 0.15 1 0.00211 47 -0.06

Number of Households 6 0.00045 50 -0.05

Number of Tribes 7 0.00039 52 0.03

Percent Muslims (Leader) 45 -0.00010 33 -0.20

Has Mosque (Resident) 40 -0.00004 23 -0.32

Percent Muslims (Resident) 35 -0.00001 27 -0.29

Percent Non-Native (Residents) 13 0.00027 45 -0.07
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Lasso Random Forests Logit

Risk factor Rank Coeff. Rank Importance Rank Coeff.

Percent Non-Native (Leader) 26 0.00005 4 -2.01

Percent in Dominant Group 4 -0.05 3 0.00064 18 -0.42

Percent Ex-Combatants (Residents) 21 0.00012 3 2.29

Percent Ex-Combatants (Leader) 53 -0.00032 1 3.09

Percent Returned for Internal Displacement 29 0.00002 44 -0.08

Percent under 30 41 -0.00006 55 -0.01

Percent Male 48 -0.00018 49 -0.05

Mean Educational Attainment 2 0.00082 51 0.04

Percent With No Education 16 0.00019 15 0.47

Proportion Receiving Any Peace Training 55 -0.00037 46 -0.06

Group Participation (0-9) 10 0.00032 22 0.33

Percent Who Contribute to Public Facilities 5 0.01 24 0.00009 8 0.76

Percent Saying Town is Safe at Night 14 0.00025 17 -0.46

Percent Saying Neighbors Are Helpful 27 0.00005 48 0.06

Collective Public Goods 33 -0.00001 25 0.29

Percent Who Rely on NGOs 54 -0.00036 31 -0.23

Percent Who Rely on Government 22 0.00012 24 -0.31

Perceived Equity in Institutions 44 -0.00010 14 -0.48

Percent Describing Police/Courts as Corrupt 43 -0.00009 19 -0.42

Percent Accepting Inter-Racial Marriage 38 -0.00003 30 0.26

Percent Who Say Muslims Shouldn’t Be Leaders 18 0.00017 41 -0.11

Percent Believing other Tribes are Violent 3 0.07 11 0.00031 10 0.73

Percent Believing Other Tribes are Dirty 12 0.00028 40 -0.12

Minority Tribe in Town Leadership 1 0.30 9 0.00034 12 0.69

Percent Reporting Burglary or Robbery 19 0.00017 39 0.13

Percent Reporting Assault 17 0.00018 16 -0.47

Percent Reporting Any Land Conflict 15 0.00020 26 0.29

Percent Reporting Any Major Destabilizing Event 25 0.00007 37 0.14

Percent of Town Landless (Leader) 32 0.00000 5 -1.38

Percent of Town Landless (Residents) 37 -0.00002 43 -0.10
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Lasso Random Forests Logit

Risk factor Rank Coeff. Rank Importance Rank Coeff.

Percent of Town Farmers 20 0.00014 7 -0.98

Unemployment Rate 51 -0.00025 56 0.00

Wealth Index 8 0.00039 9 0.73

S.D. of Wealth Index In Town 5 0.00056 54 0.01

Exposure to War Violence 56 -0.00039 6 1.16

Participation in War Violence 30 0.00001 2 -2.80

Percent Reporting Loss of Land During War 4 0.00060 20 -0.38

Percent Displaced During War 31 0.00001 38 0.13

Social Services in Town 47 -0.00014 35 0.16

Police or Magistrate in Town 28 0.00004 34 -0.17

Frequency of Police/ NGO Visits 23 0.00011 11 0.72

Town>1 Hour from Road 46 -0.00011 28 0.27

Mobile Phone Coverage 42 -0.00007 29 0.27

Less than 2 Radio Stations 36 -0.00002 32 0.23

Natural Resources In 2 Hours 39 -0.00004 21 -0.37

Commodity Price Index 34 -0.00001 13 0.55

Percent Affected By Human Disease 49 -0.00022 53 0.02

Percent Affected By Livestock Disease 50 -0.00025 36 0.15

Percent Affected By Crop Failure 52 -0.00028 42 -0.11

D.7 Relationship between different forms of violence

Table C.7 expands Table 6 and examines the extent to which two of our categories of

violence can predict the third, either in 2010 or 2012.

D.8 Disaggregated violence

Table C.8 expands Table 7 to include full performance statistics.
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Table C.5: Alternate ensemble methods

(a) Simulated forecast (2010)

Logistic

stack

Model

Average

Majority

vote

Performance metric (1) (2) (3)

AUC 0.50 0.55
True positives (sensitivity) 45% 59% 72%
True negatives (specificity) 54% 49% 38%
Overall accuracy 53% 50% 44%
Ratio of false + to true + 4.97 4.19 4.17
Ratio of false - to true + 1.36 0.71 0.40
Violence Predicted (% of Villages) 46% 53% 64%
False Negatives (% of Villages) 9% 7% 5%

Logistic

stack

Model

Average

Majority

vote

Performance metric (1) (2) (3)

AUC 0.56 0.65
True positives (sensitivity) 73% 83% 90%
True negatives (specificity) 29% 39% 20%
Overall accuracy 36% 46% 32%
Ratio of false + to true + 4.93 3.76 4.47
Ratio of false - to true + 0.38 0.21 0.11
Violence Predicted (% of Villages) 71% 65% 81%
False Negatives (% of Villages) 5% 3% 2%

(b) 2012 Forecasts
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